GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 104.21.83.152  /  Your IP : 216.73.216.82
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/tests/alt-php84-brotli_0.5.0-3.el8/brotli/c/enc/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/tests/alt-php84-brotli_0.5.0-3.el8/brotli/c/enc/cluster_inc.h
/* NOLINT(build/header_guard) */
/* Copyright 2013 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* template parameters: FN, CODE */

#define HistogramType FN(Histogram)

/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
   it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
BROTLI_INTERNAL void FN(BrotliCompareAndPushToQueue)(
    const HistogramType* out, const uint32_t* cluster_size, uint32_t idx1,
    uint32_t idx2, size_t max_num_pairs, HistogramPair* pairs,
    size_t* num_pairs) CODE({
  BROTLI_BOOL is_good_pair = BROTLI_FALSE;
  HistogramPair p;
  p.idx1 = p.idx2 = 0;
  p.cost_diff = p.cost_combo = 0;
  if (idx1 == idx2) {
    return;
  }
  if (idx2 < idx1) {
    uint32_t t = idx2;
    idx2 = idx1;
    idx1 = t;
  }
  p.idx1 = idx1;
  p.idx2 = idx2;
  p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
  p.cost_diff -= out[idx1].bit_cost_;
  p.cost_diff -= out[idx2].bit_cost_;

  if (out[idx1].total_count_ == 0) {
    p.cost_combo = out[idx2].bit_cost_;
    is_good_pair = BROTLI_TRUE;
  } else if (out[idx2].total_count_ == 0) {
    p.cost_combo = out[idx1].bit_cost_;
    is_good_pair = BROTLI_TRUE;
  } else {
    double threshold = *num_pairs == 0 ? 1e99 :
        BROTLI_MAX(double, 0.0, pairs[0].cost_diff);
    HistogramType combo = out[idx1];
    double cost_combo;
    FN(HistogramAddHistogram)(&combo, &out[idx2]);
    cost_combo = FN(BrotliPopulationCost)(&combo);
    if (cost_combo < threshold - p.cost_diff) {
      p.cost_combo = cost_combo;
      is_good_pair = BROTLI_TRUE;
    }
  }
  if (is_good_pair) {
    p.cost_diff += p.cost_combo;
    if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) {
      /* Replace the top of the queue if needed. */
      if (*num_pairs < max_num_pairs) {
        pairs[*num_pairs] = pairs[0];
        ++(*num_pairs);
      }
      pairs[0] = p;
    } else if (*num_pairs < max_num_pairs) {
      pairs[*num_pairs] = p;
      ++(*num_pairs);
    }
  }
})

BROTLI_INTERNAL size_t FN(BrotliHistogramCombine)(HistogramType* out,
                                                  uint32_t* cluster_size,
                                                  uint32_t* symbols,
                                                  uint32_t* clusters,
                                                  HistogramPair* pairs,
                                                  size_t num_clusters,
                                                  size_t symbols_size,
                                                  size_t max_clusters,
                                                  size_t max_num_pairs) CODE({
  double cost_diff_threshold = 0.0;
  size_t min_cluster_size = 1;
  size_t num_pairs = 0;

  {
    /* We maintain a vector of histogram pairs, with the property that the pair
       with the maximum bit cost reduction is the first. */
    size_t idx1;
    for (idx1 = 0; idx1 < num_clusters; ++idx1) {
      size_t idx2;
      for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) {
        FN(BrotliCompareAndPushToQueue)(out, cluster_size, clusters[idx1],
            clusters[idx2], max_num_pairs, &pairs[0], &num_pairs);
      }
    }
  }

  while (num_clusters > min_cluster_size) {
    uint32_t best_idx1;
    uint32_t best_idx2;
    size_t i;
    if (pairs[0].cost_diff >= cost_diff_threshold) {
      cost_diff_threshold = 1e99;
      min_cluster_size = max_clusters;
      continue;
    }
    /* Take the best pair from the top of heap. */
    best_idx1 = pairs[0].idx1;
    best_idx2 = pairs[0].idx2;
    FN(HistogramAddHistogram)(&out[best_idx1], &out[best_idx2]);
    out[best_idx1].bit_cost_ = pairs[0].cost_combo;
    cluster_size[best_idx1] += cluster_size[best_idx2];
    for (i = 0; i < symbols_size; ++i) {
      if (symbols[i] == best_idx2) {
        symbols[i] = best_idx1;
      }
    }
    for (i = 0; i < num_clusters; ++i) {
      if (clusters[i] == best_idx2) {
        memmove(&clusters[i], &clusters[i + 1],
                (num_clusters - i - 1) * sizeof(clusters[0]));
        break;
      }
    }
    --num_clusters;
    {
      /* Remove pairs intersecting the just combined best pair. */
      size_t copy_to_idx = 0;
      for (i = 0; i < num_pairs; ++i) {
        HistogramPair* p = &pairs[i];
        if (p->idx1 == best_idx1 || p->idx2 == best_idx1 ||
            p->idx1 == best_idx2 || p->idx2 == best_idx2) {
          /* Remove invalid pair from the queue. */
          continue;
        }
        if (HistogramPairIsLess(&pairs[0], p)) {
          /* Replace the top of the queue if needed. */
          HistogramPair front = pairs[0];
          pairs[0] = *p;
          pairs[copy_to_idx] = front;
        } else {
          pairs[copy_to_idx] = *p;
        }
        ++copy_to_idx;
      }
      num_pairs = copy_to_idx;
    }

    /* Push new pairs formed with the combined histogram to the heap. */
    for (i = 0; i < num_clusters; ++i) {
      FN(BrotliCompareAndPushToQueue)(out, cluster_size, best_idx1, clusters[i],
                                      max_num_pairs, &pairs[0], &num_pairs);
    }
  }
  return num_clusters;
})

/* What is the bit cost of moving histogram from cur_symbol to candidate. */
BROTLI_INTERNAL double FN(BrotliHistogramBitCostDistance)(
    const HistogramType* histogram, const HistogramType* candidate) CODE({
  if (histogram->total_count_ == 0) {
    return 0.0;
  } else {
    HistogramType tmp = *histogram;
    FN(HistogramAddHistogram)(&tmp, candidate);
    return FN(BrotliPopulationCost)(&tmp) - candidate->bit_cost_;
  }
})

/* Find the best 'out' histogram for each of the 'in' histograms.
   When called, clusters[0..num_clusters) contains the unique values from
   symbols[0..in_size), but this property is not preserved in this function.
   Note: we assume that out[]->bit_cost_ is already up-to-date. */
BROTLI_INTERNAL void FN(BrotliHistogramRemap)(const HistogramType* in,
    size_t in_size, const uint32_t* clusters, size_t num_clusters,
    HistogramType* out, uint32_t* symbols) CODE({
  size_t i;
  for (i = 0; i < in_size; ++i) {
    uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1];
    double best_bits =
        FN(BrotliHistogramBitCostDistance)(&in[i], &out[best_out]);
    size_t j;
    for (j = 0; j < num_clusters; ++j) {
      const double cur_bits =
          FN(BrotliHistogramBitCostDistance)(&in[i], &out[clusters[j]]);
      if (cur_bits < best_bits) {
        best_bits = cur_bits;
        best_out = clusters[j];
      }
    }
    symbols[i] = best_out;
  }

  /* Recompute each out based on raw and symbols. */
  for (i = 0; i < num_clusters; ++i) {
    FN(HistogramClear)(&out[clusters[i]]);
  }
  for (i = 0; i < in_size; ++i) {
    FN(HistogramAddHistogram)(&out[symbols[i]], &in[i]);
  }
})

/* Reorders elements of the out[0..length) array and changes values in
   symbols[0..length) array in the following way:
     * when called, symbols[] contains indexes into out[], and has N unique
       values (possibly N < length)
     * on return, symbols'[i] = f(symbols[i]) and
                  out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length,
       where f is a bijection between the range of symbols[] and [0..N), and
       the first occurrences of values in symbols'[i] come in consecutive
       increasing order.
   Returns N, the number of unique values in symbols[]. */
BROTLI_INTERNAL size_t FN(BrotliHistogramReindex)(MemoryManager* m,
    HistogramType* out, uint32_t* symbols, size_t length) CODE({
  static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX;
  uint32_t* new_index = BROTLI_ALLOC(m, uint32_t, length);
  uint32_t next_index;
  HistogramType* tmp;
  size_t i;
  if (BROTLI_IS_OOM(m)) return 0;
  for (i = 0; i < length; ++i) {
      new_index[i] = kInvalidIndex;
  }
  next_index = 0;
  for (i = 0; i < length; ++i) {
    if (new_index[symbols[i]] == kInvalidIndex) {
      new_index[symbols[i]] = next_index;
      ++next_index;
    }
  }
  /* TODO: by using idea of "cycle-sort" we can avoid allocation of
     tmp and reduce the number of copying by the factor of 2. */
  tmp = BROTLI_ALLOC(m, HistogramType, next_index);
  if (BROTLI_IS_OOM(m)) return 0;
  next_index = 0;
  for (i = 0; i < length; ++i) {
    if (new_index[symbols[i]] == next_index) {
      tmp[next_index] = out[symbols[i]];
      ++next_index;
    }
    symbols[i] = new_index[symbols[i]];
  }
  BROTLI_FREE(m, new_index);
  for (i = 0; i < next_index; ++i) {
    out[i] = tmp[i];
  }
  BROTLI_FREE(m, tmp);
  return next_index;
})

BROTLI_INTERNAL void FN(BrotliClusterHistograms)(
    MemoryManager* m, const HistogramType* in, const size_t in_size,
    size_t max_histograms, HistogramType* out, size_t* out_size,
    uint32_t* histogram_symbols) CODE({
  uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, in_size);
  uint32_t* clusters = BROTLI_ALLOC(m, uint32_t, in_size);
  size_t num_clusters = 0;
  const size_t max_input_histograms = 64;
  size_t pairs_capacity = max_input_histograms * max_input_histograms / 2;
  /* For the first pass of clustering, we allow all pairs. */
  HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity + 1);
  size_t i;

  if (BROTLI_IS_OOM(m)) return;

  for (i = 0; i < in_size; ++i) {
    cluster_size[i] = 1;
  }

  for (i = 0; i < in_size; ++i) {
    out[i] = in[i];
    out[i].bit_cost_ = FN(BrotliPopulationCost)(&in[i]);
    histogram_symbols[i] = (uint32_t)i;
  }

  for (i = 0; i < in_size; i += max_input_histograms) {
    size_t num_to_combine =
        BROTLI_MIN(size_t, in_size - i, max_input_histograms);
    size_t num_new_clusters;
    size_t j;
    for (j = 0; j < num_to_combine; ++j) {
      clusters[num_clusters + j] = (uint32_t)(i + j);
    }
    num_new_clusters =
        FN(BrotliHistogramCombine)(out, cluster_size,
                                   &histogram_symbols[i],
                                   &clusters[num_clusters], pairs,
                                   num_to_combine, num_to_combine,
                                   max_histograms, pairs_capacity);
    num_clusters += num_new_clusters;
  }

  {
    /* For the second pass, we limit the total number of histogram pairs.
       After this limit is reached, we only keep searching for the best pair. */
    size_t max_num_pairs = BROTLI_MIN(size_t,
        64 * num_clusters, (num_clusters / 2) * num_clusters);
    BROTLI_ENSURE_CAPACITY(
        m, HistogramPair, pairs, pairs_capacity, max_num_pairs + 1);
    if (BROTLI_IS_OOM(m)) return;

    /* Collapse similar histograms. */
    num_clusters = FN(BrotliHistogramCombine)(out, cluster_size,
                                              histogram_symbols, clusters,
                                              pairs, num_clusters, in_size,
                                              max_histograms, max_num_pairs);
  }
  BROTLI_FREE(m, pairs);
  BROTLI_FREE(m, cluster_size);
  /* Find the optimal map from original histograms to the final ones. */
  FN(BrotliHistogramRemap)(in, in_size, clusters, num_clusters,
                           out, histogram_symbols);
  BROTLI_FREE(m, clusters);
  /* Convert the context map to a canonical form. */
  *out_size = FN(BrotliHistogramReindex)(m, out, histogram_symbols, in_size);
  if (BROTLI_IS_OOM(m)) return;
})

#undef HistogramType

Youez - 2016 - github.com/yon3zu
LinuXploit