GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 172.67.177.218  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/array_api/linalg.py
from __future__ import annotations

from ._dtypes import (
    _floating_dtypes,
    _numeric_dtypes,
    float32,
    float64,
    complex64,
    complex128
)
from ._manipulation_functions import reshape
from ._array_object import Array

from ..core.numeric import normalize_axis_tuple

from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype

from typing import NamedTuple

import numpy.linalg
import numpy as np

class EighResult(NamedTuple):
    eigenvalues: Array
    eigenvectors: Array

class QRResult(NamedTuple):
    Q: Array
    R: Array

class SlogdetResult(NamedTuple):
    sign: Array
    logabsdet: Array

class SVDResult(NamedTuple):
    U: Array
    S: Array
    Vh: Array

# Note: the inclusion of the upper keyword is different from
# np.linalg.cholesky, which does not have it.
def cholesky(x: Array, /, *, upper: bool = False) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.cholesky.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in cholesky')
    L = np.linalg.cholesky(x._array)
    if upper:
        return Array._new(L).mT
    return Array._new(L)

# Note: cross is the numpy top-level namespace, not np.linalg
def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.

    See its docstring for more information.
    """
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in cross')
    # Note: this is different from np.cross(), which broadcasts
    if x1.shape != x2.shape:
        raise ValueError('x1 and x2 must have the same shape')
    if x1.ndim == 0:
        raise ValueError('cross() requires arrays of dimension at least 1')
    # Note: this is different from np.cross(), which allows dimension 2
    if x1.shape[axis] != 3:
        raise ValueError('cross() dimension must equal 3')
    return Array._new(np.cross(x1._array, x2._array, axis=axis))

def det(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.det.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in det')
    return Array._new(np.linalg.det(x._array))

# Note: diagonal is the numpy top-level namespace, not np.linalg
def diagonal(x: Array, /, *, offset: int = 0) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.

    See its docstring for more information.
    """
    # Note: diagonal always operates on the last two axes, whereas np.diagonal
    # operates on the first two axes by default
    return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))


def eigh(x: Array, /) -> EighResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.eigh.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in eigh')

    # Note: the return type here is a namedtuple, which is different from
    # np.eigh, which only returns a tuple.
    return EighResult(*map(Array._new, np.linalg.eigh(x._array)))


def eigvalsh(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.eigvalsh.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in eigvalsh')

    return Array._new(np.linalg.eigvalsh(x._array))

def inv(x: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.inv.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in inv')

    return Array._new(np.linalg.inv(x._array))


# Note: matmul is the numpy top-level namespace but not in np.linalg
def matmul(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.

    See its docstring for more information.
    """
    # Note: the restriction to numeric dtypes only is different from
    # np.matmul.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in matmul')

    return Array._new(np.matmul(x1._array, x2._array))


# Note: the name here is different from norm(). The array API norm is split
# into matrix_norm and vector_norm().

# The type for ord should be Optional[Union[int, float, Literal[np.inf,
# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
# literals.
def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.norm.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in matrix_norm')

    return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))


def matrix_power(x: Array, n: int, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.matrix_power.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')

    # np.matrix_power already checks if n is an integer
    return Array._new(np.linalg.matrix_power(x._array, n))

# Note: the keyword argument name rtol is different from np.linalg.matrix_rank
def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.

    See its docstring for more information.
    """
    # Note: this is different from np.linalg.matrix_rank, which supports 1
    # dimensional arrays.
    if x.ndim < 2:
        raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
    S = np.linalg.svd(x._array, compute_uv=False)
    if rtol is None:
        tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
    else:
        if isinstance(rtol, Array):
            rtol = rtol._array
        # Note: this is different from np.linalg.matrix_rank, which does not multiply
        # the tolerance by the largest singular value.
        tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
    return Array._new(np.count_nonzero(S > tol, axis=-1))


# Note: this function is new in the array API spec. Unlike transpose, it only
# transposes the last two axes.
def matrix_transpose(x: Array, /) -> Array:
    if x.ndim < 2:
        raise ValueError("x must be at least 2-dimensional for matrix_transpose")
    return Array._new(np.swapaxes(x._array, -1, -2))

# Note: outer is the numpy top-level namespace, not np.linalg
def outer(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.

    See its docstring for more information.
    """
    # Note: the restriction to numeric dtypes only is different from
    # np.outer.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in outer')

    # Note: the restriction to only 1-dim arrays is different from np.outer
    if x1.ndim != 1 or x2.ndim != 1:
        raise ValueError('The input arrays to outer must be 1-dimensional')

    return Array._new(np.outer(x1._array, x2._array))

# Note: the keyword argument name rtol is different from np.linalg.pinv
def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.pinv.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in pinv')

    # Note: this is different from np.linalg.pinv, which does not multiply the
    # default tolerance by max(M, N).
    if rtol is None:
        rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
    return Array._new(np.linalg.pinv(x._array, rcond=rtol))

def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.qr.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in qr')

    # Note: the return type here is a namedtuple, which is different from
    # np.linalg.qr, which only returns a tuple.
    return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))

def slogdet(x: Array, /) -> SlogdetResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.slogdet.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in slogdet')

    # Note: the return type here is a namedtuple, which is different from
    # np.linalg.slogdet, which only returns a tuple.
    return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))

# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
# of matrices. The np.linalg.solve behavior of allowing stacks of both
# matrices and vectors is ambiguous c.f.
# https://github.com/numpy/numpy/issues/15349 and
# https://github.com/data-apis/array-api/issues/285.

# To workaround this, the below is the code from np.linalg.solve except
# only calling solve1 in the exactly 1D case.
def _solve(a, b):
    from ..linalg.linalg import (_makearray, _assert_stacked_2d,
                                 _assert_stacked_square, _commonType,
                                 isComplexType, get_linalg_error_extobj,
                                 _raise_linalgerror_singular)
    from ..linalg import _umath_linalg

    a, _ = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    b, wrap = _makearray(b)
    t, result_t = _commonType(a, b)

    # This part is different from np.linalg.solve
    if b.ndim == 1:
        gufunc = _umath_linalg.solve1
    else:
        gufunc = _umath_linalg.solve

    # This does nothing currently but is left in because it will be relevant
    # when complex dtype support is added to the spec in 2022.
    signature = 'DD->D' if isComplexType(t) else 'dd->d'
    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
    r = gufunc(a, b, signature=signature, extobj=extobj)

    return wrap(r.astype(result_t, copy=False))

def solve(x1: Array, x2: Array, /) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.solve.
    if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in solve')

    return Array._new(_solve(x1._array, x2._array))

def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
    """
    Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.svd.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in svd')

    # Note: the return type here is a namedtuple, which is different from
    # np.svd, which only returns a tuple.
    return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))

# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
# np.linalg.svd(compute_uv=False).
def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in svdvals')
    return Array._new(np.linalg.svd(x._array, compute_uv=False))

# Note: tensordot is the numpy top-level namespace but not in np.linalg

# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
    # Note: the restriction to numeric dtypes only is different from
    # np.tensordot.
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in tensordot')

    return Array._new(np.tensordot(x1._array, x2._array, axes=axes))

# Note: trace is the numpy top-level namespace, not np.linalg
def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.

    See its docstring for more information.
    """
    if x.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in trace')

    # Note: trace() works the same as sum() and prod() (see
    # _statistical_functions.py)
    if dtype is None:
        if x.dtype == float32:
            dtype = float64
        elif x.dtype == complex64:
            dtype = complex128
    # Note: trace always operates on the last two axes, whereas np.trace
    # operates on the first two axes by default
    return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))

# Note: vecdot is not in NumPy
def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
    if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
        raise TypeError('Only numeric dtypes are allowed in vecdot')
    ndim = max(x1.ndim, x2.ndim)
    x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
    x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
    if x1_shape[axis] != x2_shape[axis]:
        raise ValueError("x1 and x2 must have the same size along the given axis")

    x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
    x1_ = np.moveaxis(x1_, axis, -1)
    x2_ = np.moveaxis(x2_, axis, -1)

    res = x1_[..., None, :] @ x2_[..., None]
    return Array._new(res[..., 0, 0])


# Note: the name here is different from norm(). The array API norm is split
# into matrix_norm and vector_norm().

# The type for ord should be Optional[Union[int, float, Literal[np.inf,
# -np.inf]]] but Literal does not support floating-point literals.
def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
    """
    Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.

    See its docstring for more information.
    """
    # Note: the restriction to floating-point dtypes only is different from
    # np.linalg.norm.
    if x.dtype not in _floating_dtypes:
        raise TypeError('Only floating-point dtypes are allowed in norm')

    # np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
    # when axis=None and the input is 2-D, so to force a vector norm, we make
    # it so the input is 1-D (for axis=None), or reshape so that norm is done
    # on a single dimension.
    a = x._array
    if axis is None:
        # Note: np.linalg.norm() doesn't handle 0-D arrays
        a = a.ravel()
        _axis = 0
    elif isinstance(axis, tuple):
        # Note: The axis argument supports any number of axes, whereas
        # np.linalg.norm() only supports a single axis for vector norm.
        normalized_axis = normalize_axis_tuple(axis, x.ndim)
        rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
        newshape = axis + rest
        a = np.transpose(a, newshape).reshape(
            (np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
        _axis = 0
    else:
        _axis = axis

    res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))

    if keepdims:
        # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
        # above to avoid matrix norm logic.
        shape = list(x.shape)
        _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
        for i in _axis:
            shape[i] = 1
        res = reshape(res, tuple(shape))

    return res

__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']

Youez - 2016 - github.com/yon3zu
LinuXploit