GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 172.67.177.218  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib//function_base.pyi
import sys
from collections.abc import Sequence, Iterator, Callable, Iterable
from typing import (
    Literal as L,
    Any,
    TypeVar,
    overload,
    Protocol,
    SupportsIndex,
    SupportsInt,
)

if sys.version_info >= (3, 10):
    from typing import TypeGuard
else:
    from typing_extensions import TypeGuard

from numpy import (
    vectorize as vectorize,
    ufunc,
    generic,
    floating,
    complexfloating,
    intp,
    float64,
    complex128,
    timedelta64,
    datetime64,
    object_,
    _OrderKACF,
)

from numpy._typing import (
    NDArray,
    ArrayLike,
    DTypeLike,
    _ShapeLike,
    _ScalarLike_co,
    _DTypeLike,
    _ArrayLike,
    _ArrayLikeInt_co,
    _ArrayLikeFloat_co,
    _ArrayLikeComplex_co,
    _ArrayLikeTD64_co,
    _ArrayLikeDT64_co,
    _ArrayLikeObject_co,
    _FloatLike_co,
    _ComplexLike_co,
)

from numpy.core.function_base import (
    add_newdoc as add_newdoc,
)

from numpy.core.multiarray import (
    add_docstring as add_docstring,
    bincount as bincount,
)

from numpy.core.umath import _add_newdoc_ufunc

_T = TypeVar("_T")
_T_co = TypeVar("_T_co", covariant=True)
_SCT = TypeVar("_SCT", bound=generic)
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])

_2Tuple = tuple[_T, _T]

class _TrimZerosSequence(Protocol[_T_co]):
    def __len__(self) -> int: ...
    def __getitem__(self, key: slice, /) -> _T_co: ...
    def __iter__(self) -> Iterator[Any]: ...

class _SupportsWriteFlush(Protocol):
    def write(self, s: str, /) -> object: ...
    def flush(self) -> object: ...

__all__: list[str]

# NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc`
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ...

@overload
def rot90(
    m: _ArrayLike[_SCT],
    k: int = ...,
    axes: tuple[int, int] = ...,
) -> NDArray[_SCT]: ...
@overload
def rot90(
    m: ArrayLike,
    k: int = ...,
    axes: tuple[int, int] = ...,
) -> NDArray[Any]: ...

@overload
def flip(m: _SCT, axis: None = ...) -> _SCT: ...
@overload
def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ...
@overload
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
@overload
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ...

def iterable(y: object) -> TypeGuard[Iterable[Any]]: ...

@overload
def average(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    weights: None | _ArrayLikeFloat_co= ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def average(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    weights: None | _ArrayLikeComplex_co = ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def average(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    weights: None | Any = ...,
    returned: L[False] = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def average(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    weights: None | _ArrayLikeFloat_co= ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[floating[Any]]: ...
@overload
def average(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    weights: None | _ArrayLikeComplex_co = ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[complexfloating[Any, Any]]: ...
@overload
def average(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    weights: None | Any = ...,
    returned: L[True] = ...,
    keepdims: L[False] = ...,
) -> _2Tuple[Any]: ...
@overload
def average(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    weights: None | Any = ...,
    returned: L[False] = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def average(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    weights: None | Any = ...,
    returned: L[True] = ...,
    keepdims: bool = ...,
) -> _2Tuple[Any]: ...

@overload
def asarray_chkfinite(
    a: _ArrayLike[_SCT],
    dtype: None = ...,
    order: _OrderKACF = ...,
) -> NDArray[_SCT]: ...
@overload
def asarray_chkfinite(
    a: object,
    dtype: None = ...,
    order: _OrderKACF = ...,
) -> NDArray[Any]: ...
@overload
def asarray_chkfinite(
    a: Any,
    dtype: _DTypeLike[_SCT],
    order: _OrderKACF = ...,
) -> NDArray[_SCT]: ...
@overload
def asarray_chkfinite(
    a: Any,
    dtype: DTypeLike,
    order: _OrderKACF = ...,
) -> NDArray[Any]: ...

# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
# xref python/mypy#8645
@overload
def piecewise(
    x: _ArrayLike[_SCT],
    condlist: ArrayLike,
    funclist: Sequence[Any | Callable[..., Any]],
    *args: Any,
    **kw: Any,
) -> NDArray[_SCT]: ...
@overload
def piecewise(
    x: ArrayLike,
    condlist: ArrayLike,
    funclist: Sequence[Any | Callable[..., Any]],
    *args: Any,
    **kw: Any,
) -> NDArray[Any]: ...

def select(
    condlist: Sequence[ArrayLike],
    choicelist: Sequence[ArrayLike],
    default: ArrayLike = ...,
) -> NDArray[Any]: ...

@overload
def copy(
    a: _ArrayType,
    order: _OrderKACF,
    subok: L[True],
) -> _ArrayType: ...
@overload
def copy(
    a: _ArrayType,
    order: _OrderKACF = ...,
    *,
    subok: L[True],
) -> _ArrayType: ...
@overload
def copy(
    a: _ArrayLike[_SCT],
    order: _OrderKACF = ...,
    subok: L[False] = ...,
) -> NDArray[_SCT]: ...
@overload
def copy(
    a: ArrayLike,
    order: _OrderKACF = ...,
    subok: L[False] = ...,
) -> NDArray[Any]: ...

def gradient(
    f: ArrayLike,
    *varargs: ArrayLike,
    axis: None | _ShapeLike = ...,
    edge_order: L[1, 2] = ...,
) -> Any: ...

@overload
def diff(
    a: _T,
    n: L[0],
    axis: SupportsIndex = ...,
    prepend: ArrayLike = ...,
    append: ArrayLike = ...,
) -> _T: ...
@overload
def diff(
    a: ArrayLike,
    n: int = ...,
    axis: SupportsIndex = ...,
    prepend: ArrayLike = ...,
    append: ArrayLike = ...,
) -> NDArray[Any]: ...

@overload
def interp(
    x: _ArrayLikeFloat_co,
    xp: _ArrayLikeFloat_co,
    fp: _ArrayLikeFloat_co,
    left: None | _FloatLike_co = ...,
    right: None | _FloatLike_co = ...,
    period: None | _FloatLike_co = ...,
) -> NDArray[float64]: ...
@overload
def interp(
    x: _ArrayLikeFloat_co,
    xp: _ArrayLikeFloat_co,
    fp: _ArrayLikeComplex_co,
    left: None | _ComplexLike_co = ...,
    right: None | _ComplexLike_co = ...,
    period: None | _FloatLike_co = ...,
) -> NDArray[complex128]: ...

@overload
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ...
@overload
def angle(z: object_, deg: bool = ...) -> Any: ...
@overload
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ...
@overload
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ...

@overload
def unwrap(
    p: _ArrayLikeFloat_co,
    discont: None | float = ...,
    axis: int = ...,
    *,
    period: float = ...,
) -> NDArray[floating[Any]]: ...
@overload
def unwrap(
    p: _ArrayLikeObject_co,
    discont: None | float = ...,
    axis: int = ...,
    *,
    period: float = ...,
) -> NDArray[object_]: ...

def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ...

def trim_zeros(
    filt: _TrimZerosSequence[_T],
    trim: L["f", "b", "fb", "bf"] = ...,
) -> _T: ...

@overload
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
@overload
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ...

def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ...

def disp(
    mesg: object,
    device: None | _SupportsWriteFlush = ...,
    linefeed: bool = ...,
) -> None: ...

@overload
def cov(
    m: _ArrayLikeFloat_co,
    y: None | _ArrayLikeFloat_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: _DTypeLike[_SCT],
) -> NDArray[_SCT]: ...
@overload
def cov(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    bias: bool = ...,
    ddof: None | SupportsIndex | SupportsInt = ...,
    fweights: None | ArrayLike = ...,
    aweights: None | ArrayLike = ...,
    *,
    dtype: DTypeLike,
) -> NDArray[Any]: ...

# NOTE `bias` and `ddof` have been deprecated
@overload
def corrcoef(
    m: _ArrayLikeFloat_co,
    y: None | _ArrayLikeFloat_co = ...,
    rowvar: bool = ...,
    *,
    dtype: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: _DTypeLike[_SCT],
) -> NDArray[_SCT]: ...
@overload
def corrcoef(
    m: _ArrayLikeComplex_co,
    y: None | _ArrayLikeComplex_co = ...,
    rowvar: bool = ...,
    *,
    dtype: DTypeLike,
) -> NDArray[Any]: ...

def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ...

def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...

def kaiser(
    M: _FloatLike_co,
    beta: _FloatLike_co,
) -> NDArray[floating[Any]]: ...

@overload
def sinc(x: _FloatLike_co) -> floating[Any]: ...
@overload
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
@overload
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
@overload
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...

# NOTE: Deprecated
# def msort(a: ArrayLike) -> NDArray[Any]: ...

@overload
def median(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def median(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def median(
    a: _ArrayLikeTD64_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> timedelta64: ...
@overload
def median(
    a: _ArrayLikeObject_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def median(
    a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def median(
    a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    overwrite_input: bool = ...,
    keepdims: bool = ...,
) -> _ArrayType: ...

_MethodKind = L[
    "inverted_cdf",
    "averaged_inverted_cdf",
    "closest_observation",
    "interpolated_inverted_cdf",
    "hazen",
    "weibull",
    "linear",
    "median_unbiased",
    "normal_unbiased",
    "lower",
    "higher",
    "midpoint",
    "nearest",
]

@overload
def percentile(
    a: _ArrayLikeFloat_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> floating[Any]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> complexfloating[Any, Any]: ...
@overload
def percentile(
    a: _ArrayLikeTD64_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> timedelta64: ...
@overload
def percentile(
    a: _ArrayLikeDT64_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> datetime64: ...
@overload
def percentile(
    a: _ArrayLikeObject_co,
    q: _FloatLike_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> Any: ...
@overload
def percentile(
    a: _ArrayLikeFloat_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[floating[Any]]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def percentile(
    a: _ArrayLikeTD64_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[timedelta64]: ...
@overload
def percentile(
    a: _ArrayLikeDT64_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[datetime64]: ...
@overload
def percentile(
    a: _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: L[False] = ...,
) -> NDArray[object_]: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def percentile(
    a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    q: _ArrayLikeFloat_co,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    overwrite_input: bool = ...,
    method: _MethodKind = ...,
    keepdims: bool = ...,
) -> _ArrayType: ...

# NOTE: Not an alias, but they do have identical signatures
# (that we can reuse)
quantile = percentile

# TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise
def trapz(
    y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
    x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ...,
    dx: float = ...,
    axis: SupportsIndex = ...,
) -> Any: ...

def meshgrid(
    *xi: ArrayLike,
    copy: bool = ...,
    sparse: bool = ...,
    indexing: L["xy", "ij"] = ...,
) -> list[NDArray[Any]]: ...

@overload
def delete(
    arr: _ArrayLike[_SCT],
    obj: slice | _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def delete(
    arr: ArrayLike,
    obj: slice | _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

@overload
def insert(
    arr: _ArrayLike[_SCT],
    obj: slice | _ArrayLikeInt_co,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def insert(
    arr: ArrayLike,
    obj: slice | _ArrayLikeInt_co,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

def append(
    arr: ArrayLike,
    values: ArrayLike,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

@overload
def digitize(
    x: _FloatLike_co,
    bins: _ArrayLikeFloat_co,
    right: bool = ...,
) -> intp: ...
@overload
def digitize(
    x: _ArrayLikeFloat_co,
    bins: _ArrayLikeFloat_co,
    right: bool = ...,
) -> NDArray[intp]: ...

Youez - 2016 - github.com/yon3zu
LinuXploit