GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 172.67.177.218  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/test_polynomial.py
import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_almost_equal,
    assert_array_almost_equal, assert_raises, assert_allclose
    )

import pytest

# `poly1d` has some support for `bool_` and `timedelta64`,
# but it is limited and they are therefore excluded here
TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O"


class TestPolynomial:
    def test_poly1d_str_and_repr(self):
        p = np.poly1d([1., 2, 3])
        assert_equal(repr(p), 'poly1d([1., 2., 3.])')
        assert_equal(str(p),
                     '   2\n'
                     '1 x + 2 x + 3')

        q = np.poly1d([3., 2, 1])
        assert_equal(repr(q), 'poly1d([3., 2., 1.])')
        assert_equal(str(q),
                     '   2\n'
                     '3 x + 2 x + 1')

        r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j])
        assert_equal(str(r),
                     '            3      2\n'
                     '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)')

        assert_equal(str(np.poly1d([-3, -2, -1])),
                     '    2\n'
                     '-3 x - 2 x - 1')

    def test_poly1d_resolution(self):
        p = np.poly1d([1., 2, 3])
        q = np.poly1d([3., 2, 1])
        assert_equal(p(0), 3.0)
        assert_equal(p(5), 38.0)
        assert_equal(q(0), 1.0)
        assert_equal(q(5), 86.0)

    def test_poly1d_math(self):
        # here we use some simple coeffs to make calculations easier
        p = np.poly1d([1., 2, 4])
        q = np.poly1d([4., 2, 1])
        assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75])))
        assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.]))
        assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.]))

        p = np.poly1d([1., 2, 3])
        q = np.poly1d([3., 2, 1])
        assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.]))
        assert_equal(p + q, np.poly1d([4., 4., 4.]))
        assert_equal(p - q, np.poly1d([-2., 0., 2.]))
        assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.]))
        assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.]))
        assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.]))
        assert_equal(p.deriv(), np.poly1d([2., 2.]))
        assert_equal(p.deriv(2), np.poly1d([2.]))
        assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])),
                     (np.poly1d([1., -1.]), np.poly1d([0.])))

    @pytest.mark.parametrize("type_code", TYPE_CODES)
    def test_poly1d_misc(self, type_code: str) -> None:
        dtype = np.dtype(type_code)
        ar = np.array([1, 2, 3], dtype=dtype)
        p = np.poly1d(ar)

        # `__eq__`
        assert_equal(np.asarray(p), ar)
        assert_equal(np.asarray(p).dtype, dtype)
        assert_equal(len(p), 2)

        # `__getitem__`
        comparison_dct = {-1: 0, 0: 3, 1: 2, 2: 1, 3: 0}
        for index, ref in comparison_dct.items():
            scalar = p[index]
            assert_equal(scalar, ref)
            if dtype == np.object_:
                assert isinstance(scalar, int)
            else:
                assert_equal(scalar.dtype, dtype)

    def test_poly1d_variable_arg(self):
        q = np.poly1d([1., 2, 3], variable='y')
        assert_equal(str(q),
                     '   2\n'
                     '1 y + 2 y + 3')
        q = np.poly1d([1., 2, 3], variable='lambda')
        assert_equal(str(q),
                     '        2\n'
                     '1 lambda + 2 lambda + 3')

    def test_poly(self):
        assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
                                  [1, -3, -2, 6])

        # From matlab docs
        A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
        assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])

        # Should produce real output for perfect conjugates
        assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
        assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
                                      1-2j, 1.+3.5j, 1-3.5j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
        assert_(np.isrealobj(np.poly([1j, -1j])))
        assert_(np.isrealobj(np.poly([1, -1])))

        assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))

        np.random.seed(42)
        a = np.random.randn(100) + 1j*np.random.randn(100)
        assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))

    def test_roots(self):
        assert_array_equal(np.roots([1, 0, 0]), [0, 0])

    def test_str_leading_zeros(self):
        p = np.poly1d([4, 3, 2, 1])
        p[3] = 0
        assert_equal(str(p),
                     "   2\n"
                     "3 x + 2 x + 1")

        p = np.poly1d([1, 2])
        p[0] = 0
        p[1] = 0
        assert_equal(str(p), " \n0")

    def test_polyfit(self):
        c = np.array([3., 2., 1.])
        x = np.linspace(0, 2, 7)
        y = np.polyval(c, x)
        err = [1, -1, 1, -1, 1, -1, 1]
        weights = np.arange(8, 1, -1)**2/7.0

        # Check exception when too few points for variance estimate. Note that
        # the estimate requires the number of data points to exceed
        # degree + 1
        assert_raises(ValueError, np.polyfit,
                      [1], [1], deg=0, cov=True)

        # check 1D case
        m, cov = np.polyfit(x, y+err, 2, cov=True)
        est = [3.8571, 0.2857, 1.619]
        assert_almost_equal(est, m, decimal=4)
        val0 = [[ 1.4694, -2.9388,  0.8163],
                [-2.9388,  6.3673, -2.1224],
                [ 0.8163, -2.1224,  1.161 ]]
        assert_almost_equal(val0, cov, decimal=4)

        m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
        assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
        val = [[ 4.3964, -5.0052,  0.4878],
               [-5.0052,  6.8067, -0.9089],
               [ 0.4878, -0.9089,  0.3337]]
        assert_almost_equal(val, cov2, decimal=4)

        m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled")
        assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4)
        val = [[ 0.1473, -0.1677,  0.0163],
               [-0.1677,  0.228 , -0.0304],
               [ 0.0163, -0.0304,  0.0112]]
        assert_almost_equal(val, cov3, decimal=4)

        # check 2D (n,1) case
        y = y[:, np.newaxis]
        c = c[:, np.newaxis]
        assert_almost_equal(c, np.polyfit(x, y, 2))
        # check 2D (n,2) case
        yy = np.concatenate((y, y), axis=1)
        cc = np.concatenate((c, c), axis=1)
        assert_almost_equal(cc, np.polyfit(x, yy, 2))

        m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True)
        assert_almost_equal(est, m[:, 0], decimal=4)
        assert_almost_equal(est, m[:, 1], decimal=4)
        assert_almost_equal(val0, cov[:, :, 0], decimal=4)
        assert_almost_equal(val0, cov[:, :, 1], decimal=4)

        # check order 1 (deg=0) case, were the analytic results are simple
        np.random.seed(123)
        y = np.random.normal(size=(4, 10000))
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
        # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
        # Without scaling, since reduced chi2 is 1, the result should be the same.
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]),
                               deg=0, cov="unscaled")
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_almost_equal(np.sqrt(cov.mean()), 0.5)
        # If we estimate our errors wrong, no change with scaling:
        w = np.full(y.shape[0], 1./0.5)
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True)
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
        # But if we do not scale, our estimate for the error in the mean will
        # differ.
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled")
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_almost_equal(np.sqrt(cov.mean()), 0.25)

    def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)])

    def test_complex(self):
        p = np.poly1d([3j, 2j, 1j])
        p2 = p.integ()
        assert_((p2.coeffs == [1j, 1j, 1j, 0]).all())
        p2 = p.deriv()
        assert_((p2.coeffs == [6j, 2j]).all())

    def test_integ_coeffs(self):
        p = np.poly1d([3, 2, 1])
        p2 = p.integ(3, k=[9, 7, 6])
        assert_(
            (p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())

    def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass

    def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v)))

    def test_zero_poly_dtype(self):
        """
        Regression test for gh-16354.
        """
        z = np.array([0, 0, 0])
        p = np.poly1d(z.astype(np.int64))
        assert_equal(p.coeffs.dtype, np.int64)

        p = np.poly1d(z.astype(np.float32))
        assert_equal(p.coeffs.dtype, np.float32)

        p = np.poly1d(z.astype(np.complex64))
        assert_equal(p.coeffs.dtype, np.complex64)

    def test_poly_eq(self):
        p = np.poly1d([1, 2, 3])
        p2 = np.poly1d([1, 2, 4])
        assert_equal(p == None, False)
        assert_equal(p != None, True)
        assert_equal(p == p, True)
        assert_equal(p == p2, False)
        assert_equal(p != p2, True)

    def test_polydiv(self):
        b = np.poly1d([2, 6, 6, 1])
        a = np.poly1d([-1j, (1+2j), -(2+1j), 1])
        q, r = np.polydiv(b, a)
        assert_equal(q.coeffs.dtype, np.complex128)
        assert_equal(r.coeffs.dtype, np.complex128)
        assert_equal(q*a + r, b)

        c = [1, 2, 3]
        d = np.poly1d([1, 2, 3])
        s, t = np.polydiv(c, d)
        assert isinstance(s, np.poly1d)
        assert isinstance(t, np.poly1d)
        u, v = np.polydiv(d, c)
        assert isinstance(u, np.poly1d)
        assert isinstance(v, np.poly1d)

    def test_poly_coeffs_mutable(self):
        """ Coefficients should be modifiable """
        p = np.poly1d([1, 2, 3])

        p.coeffs += 1
        assert_equal(p.coeffs, [2, 3, 4])

        p.coeffs[2] += 10
        assert_equal(p.coeffs, [2, 3, 14])

        # this never used to be allowed - let's not add features to deprecated
        # APIs
        assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))

Youez - 2016 - github.com/yon3zu
LinuXploit