GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 104.21.83.152  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/test_printing.py
from math import nan, inf
import pytest
from numpy.core import array, arange, printoptions
import numpy.polynomial as poly
from numpy.testing import assert_equal, assert_

# For testing polynomial printing with object arrays
from fractions import Fraction
from decimal import Decimal


class TestStrUnicodeSuperSubscripts:

    @pytest.fixture(scope='class', autouse=True)
    def use_unicode(self):
        poly.set_default_printstyle('unicode')

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"),
        (arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + "
                      "6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + "
                      "11.0·x¹¹")),
    ))
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"),
        (arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + "
                      "5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + "
                      "9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")),
    ))
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"),
        (arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + "
                      "5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + "
                      "9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")),
    ))
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"),
        (arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + "
                      "5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + "
                      "9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")),
    ))
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"),
        (arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + "
                      "4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + "
                      "8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n"
                      "11.0·He₁₁(x)")),
    ))
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"),
        (arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + "
                      "5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + "
                      "9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")),
    ))
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)


class TestStrAscii:

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"),
        (arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + "
                      "5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + "
                      "9.0 x**9 + 10.0 x**10 + 11.0 x**11")),
    ))
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"),
        (arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + "
                      "4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + "
                      "8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n"
                      "11.0 T_11(x)")),
    ))
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"),
        (arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + "
                      "4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + "
                      "8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n"
                      "11.0 P_11(x)")),
    ))
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"),
        (arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + "
                      "4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + "
                      "8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n"
                      "11.0 H_11(x)")),
    ))
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"),
        (arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + "
                      "4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + "
                      "7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n"
                      "10.0 He_10(x) + 11.0 He_11(x)")),
    ))
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"),
        (arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + "
                      "4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + "
                      "8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n"
                      "11.0 L_11(x)")),
    ))
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)


class TestLinebreaking:

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    def test_single_line_one_less(self):
        # With 'ascii' style, len(str(p)) is default linewidth - 1 (i.e. 74)
        p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123])
        assert_equal(len(str(p)), 74)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 + 123.0 x**4'
        ))

    def test_num_chars_is_linewidth(self):
        # len(str(p)) == default linewidth == 75
        p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234])
        assert_equal(len(str(p)), 75)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 +\n1234.0 x**4'
        ))

    def test_first_linebreak_multiline_one_less_than_linewidth(self):
        # Multiline str where len(first_line) + len(next_term) == lw - 1 == 74
        p = poly.Polynomial(
                [12345678, 12345678, 12345678, 12345678, 1, 12345678]
            )
        assert_equal(len(str(p).split('\n')[0]), 74)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5'
        ))

    def test_first_linebreak_multiline_on_linewidth(self):
        # First line is one character longer than previous test
        p = poly.Polynomial(
                [12345678, 12345678, 12345678, 12345678.12, 1, 12345678]
            )
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5'
        ))

    @pytest.mark.parametrize(('lw', 'tgt'), (
        (75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
              '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
              '900.0 x**9')),
        (45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + '
              '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n'
              '900.0 x**9')),
        (132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
               '500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
               '900.0 x**9')),
    ))
    def test_linewidth_printoption(self, lw, tgt):
        p = poly.Polynomial(
            [0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900]
        )
        with printoptions(linewidth=lw):
            assert_equal(str(p), tgt)
            for line in str(p).split('\n'):
                assert_(len(line) < lw)


def test_set_default_printoptions():
    p = poly.Polynomial([1, 2, 3])
    c = poly.Chebyshev([1, 2, 3])
    poly.set_default_printstyle('ascii')
    assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2")
    assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)")
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²")
    assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)")
    with pytest.raises(ValueError):
        poly.set_default_printstyle('invalid_input')


def test_complex_coefficients():
    """Test both numpy and built-in complex."""
    coefs = [0+1j, 1+1j, -2+2j, 3+0j]
    # numpy complex
    p1 = poly.Polynomial(coefs)
    # Python complex
    p2 = poly.Polynomial(array(coefs, dtype=object))
    poly.set_default_printstyle('unicode')
    assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³")
    assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³")
    poly.set_default_printstyle('ascii')
    assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3")
    assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3")


@pytest.mark.parametrize(('coefs', 'tgt'), (
    (array([Fraction(1, 2), Fraction(3, 4)], dtype=object), (
        "1/2 + 3/4·x"
    )),
    (array([1, 2, Fraction(5, 7)], dtype=object), (
        "1 + 2·x + 5/7·x²"
    )),
    (array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), (
        "1.00 + 2.2·x + 3·x²"
    )),
))
def test_numeric_object_coefficients(coefs, tgt):
    p = poly.Polynomial(coefs)
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), tgt)


@pytest.mark.parametrize(('coefs', 'tgt'), (
    (array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'),
    (array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'),
))
def test_nonnumeric_object_coefficients(coefs, tgt):
    """
    Test coef fallback for object arrays of non-numeric coefficients.
    """
    p = poly.Polynomial(coefs)
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), tgt)


class TestFormat:
    def test_format_unicode(self):
        poly.set_default_printstyle('ascii')
        p = poly.Polynomial([1, 2, 0, -1])
        assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³")

    def test_format_ascii(self):
        poly.set_default_printstyle('unicode')
        p = poly.Polynomial([1, 2, 0, -1])
        assert_equal(
            format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3"
        )

    def test_empty_formatstr(self):
        poly.set_default_printstyle('ascii')
        p = poly.Polynomial([1, 2, 3])
        assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2")
        assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2")

    def test_bad_formatstr(self):
        p = poly.Polynomial([1, 2, 0, -1])
        with pytest.raises(ValueError):
            format(p, '.2f')


@pytest.mark.parametrize(('poly', 'tgt'), (
    (poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'),
    (poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'),
    (poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'),
    (poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'),
    (poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'),
    (poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'),
))
def test_symbol(poly, tgt):
    p = poly([1, 2, 3], symbol='z')
    assert_equal(f"{p:unicode}", tgt)


class TestRepr:
    def test_polynomial_str(self):
        res = repr(poly.Polynomial([0, 1]))
        tgt = (
            "Polynomial([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_chebyshev_str(self):
        res = repr(poly.Chebyshev([0, 1]))
        tgt = (
            "Chebyshev([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_legendre_repr(self):
        res = repr(poly.Legendre([0, 1]))
        tgt = (
            "Legendre([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_hermite_repr(self):
        res = repr(poly.Hermite([0, 1]))
        tgt = (
            "Hermite([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_hermiteE_repr(self):
        res = repr(poly.HermiteE([0, 1]))
        tgt = (
            "HermiteE([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_laguerre_repr(self):
        res = repr(poly.Laguerre([0, 1]))
        tgt = (
            "Laguerre([0., 1.], domain=[0, 1], window=[0, 1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)


class TestLatexRepr:
    """Test the latex repr used by Jupyter"""

    def as_latex(self, obj):
        # right now we ignore the formatting of scalars in our tests, since
        # it makes them too verbose. Ideally, the formatting of scalars will
        # be fixed such that tests below continue to pass
        obj._repr_latex_scalar = lambda x, parens=False: str(x)
        try:
            return obj._repr_latex_()
        finally:
            del obj._repr_latex_scalar

    def test_simple_polynomial(self):
        # default input
        p = poly.Polynomial([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')

        # translated input
        p = poly.Polynomial([1, 2, 3], domain=[-2, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')

        # scaled input
        p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')

        # affine input
        p = poly.Polynomial([1, 2, 3], domain=[-1, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')

    def test_basis_func(self):
        p = poly.Chebyshev([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
        # affine input - check no surplus parens are added
        p = poly.Chebyshev([1, 2, 3], domain=[-1, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')

    def test_multichar_basis_func(self):
        p = poly.HermiteE([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')

    def test_symbol_basic(self):
        # default input
        p = poly.Polynomial([1, 2, 3], symbol='z')
        assert_equal(self.as_latex(p),
            r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$')

        # translated input
        p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,'
                r'\left(1.0 + z\right)^{2}$'
            ),
        )

        # scaled input
        p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,'
                r'\left(2.0z\right)^{2}$'
            ),
        )

        # affine input
        p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,'
                r'\left(1.0 + 2.0z\right)^{2}$'
            ),
        )


SWITCH_TO_EXP = (
    '1.0 + (1.0e-01) x + (1.0e-02) x**2',
    '1.2 + (1.2e-01) x + (1.2e-02) x**2',
    '1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3',
    '1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3',
    '1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4',
    '1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + '
    '(1.23457e-04) x**4',
    '1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + '
    '(1.234568e-04) x**4 + (1.234568e-05) x**5',
    '1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + '
    '(1.2345679e-04) x**4 + (1.2345679e-05) x**5')

class TestPrintOptions:
    """
    Test the output is properly configured via printoptions.
    The exponential notation is enabled automatically when the values 
    are too small or too large.
    """

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    def test_str(self):
        p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
        assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 '
                             '+ (1.42857143e+08) x**3')

        with printoptions(precision=3):
            assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 '
                                 '+ (1.429e+08) x**3')

    def test_latex(self):
        p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
        assert_equal(p._repr_latex_(),
            r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + '
            r'\text{14285714.28571429}\,x^{2} + '
            r'\text{(1.42857143e+08)}\,x^{3}$')
        
        with printoptions(precision=3):
            assert_equal(p._repr_latex_(),
                r'$x \mapsto \text{0.5} + \text{0.143}\,x + '
                r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$')

    def test_fixed(self):
        p = poly.Polynomial([1/2])
        assert_equal(str(p), '0.5')
        
        with printoptions(floatmode='fixed'):
            assert_equal(str(p), '0.50000000')
        
        with printoptions(floatmode='fixed', precision=4):
            assert_equal(str(p), '0.5000')

    def test_switch_to_exp(self):
        for i, s in enumerate(SWITCH_TO_EXP):
            with printoptions(precision=i):
                p = poly.Polynomial([1.23456789*10**-i 
                                     for i in range(i//2+3)])
                assert str(p).replace('\n', ' ') == s 
    
    def test_non_finite(self):
        p = poly.Polynomial([nan, inf])
        assert str(p) == 'nan + inf x'
        assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$'
        with printoptions(nanstr='NAN', infstr='INF'):
            assert str(p) == 'NAN + INF x'
            assert p._repr_latex_() == \
                r'$x \mapsto \text{NAN} + \text{INF}\,x$'

Youez - 2016 - github.com/yon3zu
LinuXploit