GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 104.21.83.152  /  Your IP : 216.73.216.195
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /usr/lib64/python2.7/Demo/classes/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/lib64/python2.7/Demo/classes/Complex.py
# Complex numbers
# ---------------

# [Now that Python has a complex data type built-in, this is not very
# useful, but it's still a nice example class]

# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part).  In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
#                 if z is a tuple(re, im) it will also be converted
# PolarToComplex([r [,phi [,fullcircle]]]) ->
#       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
#       (r and phi default to 0)
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
#            the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# The cmath modules should be used instead.
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar   for *,/,pow

import math
import sys

twopi = math.pi*2.0
halfpi = math.pi/2.0

def IsComplex(obj):
    return hasattr(obj, 're') and hasattr(obj, 'im')

def ToComplex(obj):
    if IsComplex(obj):
        return obj
    elif isinstance(obj, tuple):
        return Complex(*obj)
    else:
        return Complex(obj)

def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
    phi = phi * (twopi / fullcircle)
    return Complex(math.cos(phi)*r, math.sin(phi)*r)

def Re(obj):
    if IsComplex(obj):
        return obj.re
    return obj

def Im(obj):
    if IsComplex(obj):
        return obj.im
    return 0

class Complex:

    def __init__(self, re=0, im=0):
        _re = 0
        _im = 0
        if IsComplex(re):
            _re = re.re
            _im = re.im
        else:
            _re = re
        if IsComplex(im):
            _re = _re - im.im
            _im = _im + im.re
        else:
            _im = _im + im
        # this class is immutable, so setting self.re directly is
        # not possible.
        self.__dict__['re'] = _re
        self.__dict__['im'] = _im

    def __setattr__(self, name, value):
        raise TypeError, 'Complex numbers are immutable'

    def __hash__(self):
        if not self.im:
            return hash(self.re)
        return hash((self.re, self.im))

    def __repr__(self):
        if not self.im:
            return 'Complex(%r)' % (self.re,)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __str__(self):
        if not self.im:
            return repr(self.re)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __neg__(self):
        return Complex(-self.re, -self.im)

    def __pos__(self):
        return self

    def __abs__(self):
        return math.hypot(self.re, self.im)

    def __int__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to int"
        return int(self.re)

    def __long__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to long"
        return long(self.re)

    def __float__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to float"
        return float(self.re)

    def __cmp__(self, other):
        other = ToComplex(other)
        return cmp((self.re, self.im), (other.re, other.im))

    def __rcmp__(self, other):
        other = ToComplex(other)
        return cmp(other, self)

    def __nonzero__(self):
        return not (self.re == self.im == 0)

    abs = radius = __abs__

    def angle(self, fullcircle = twopi):
        return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)

    phi = angle

    def __add__(self, other):
        other = ToComplex(other)
        return Complex(self.re + other.re, self.im + other.im)

    __radd__ = __add__

    def __sub__(self, other):
        other = ToComplex(other)
        return Complex(self.re - other.re, self.im - other.im)

    def __rsub__(self, other):
        other = ToComplex(other)
        return other - self

    def __mul__(self, other):
        other = ToComplex(other)
        return Complex(self.re*other.re - self.im*other.im,
                       self.re*other.im + self.im*other.re)

    __rmul__ = __mul__

    def __div__(self, other):
        other = ToComplex(other)
        d = float(other.re*other.re + other.im*other.im)
        if not d: raise ZeroDivisionError, 'Complex division'
        return Complex((self.re*other.re + self.im*other.im) / d,
                       (self.im*other.re - self.re*other.im) / d)

    def __rdiv__(self, other):
        other = ToComplex(other)
        return other / self

    def __pow__(self, n, z=None):
        if z is not None:
            raise TypeError, 'Complex does not support ternary pow()'
        if IsComplex(n):
            if n.im:
                if self.im: raise TypeError, 'Complex to the Complex power'
                else: return exp(math.log(self.re)*n)
            n = n.re
        r = pow(self.abs(), n)
        phi = n*self.angle()
        return Complex(math.cos(phi)*r, math.sin(phi)*r)

    def __rpow__(self, base):
        base = ToComplex(base)
        return pow(base, self)

def exp(z):
    r = math.exp(z.re)
    return Complex(math.cos(z.im)*r,math.sin(z.im)*r)


def checkop(expr, a, b, value, fuzz = 1e-6):
    print '       ', a, 'and', b,
    try:
        result = eval(expr)
    except:
        result = sys.exc_type
    print '->', result
    if isinstance(result, str) or isinstance(value, str):
        ok = (result == value)
    else:
        ok = abs(result - value) <= fuzz
    if not ok:
        print '!!\t!!\t!! should be', value, 'diff', abs(result - value)

def test():
    print 'test constructors'
    constructor_test = (
        # "expect" is an array [re,im] "got" the Complex.
            ( (0,0), Complex() ),
            ( (0,0), Complex() ),
            ( (1,0), Complex(1) ),
            ( (0,1), Complex(0,1) ),
            ( (1,2), Complex(Complex(1,2)) ),
            ( (1,3), Complex(Complex(1,2),1) ),
            ( (0,0), Complex(0,Complex(0,0)) ),
            ( (3,4), Complex(3,Complex(4)) ),
            ( (-1,3), Complex(1,Complex(3,2)) ),
            ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
    cnt = [0,0]
    for t in constructor_test:
        cnt[0] += 1
        if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
            print "        expected", t[0], "got", t[1]
            cnt[1] += 1
    print "  ", cnt[1], "of", cnt[0], "tests failed"
    # test operators
    testsuite = {
            'a+b': [
                    (1, 10, 11),
                    (1, Complex(0,10), Complex(1,10)),
                    (Complex(0,10), 1, Complex(1,10)),
                    (Complex(0,10), Complex(1), Complex(1,10)),
                    (Complex(1), Complex(0,10), Complex(1,10)),
            ],
            'a-b': [
                    (1, 10, -9),
                    (1, Complex(0,10), Complex(1,-10)),
                    (Complex(0,10), 1, Complex(-1,10)),
                    (Complex(0,10), Complex(1), Complex(-1,10)),
                    (Complex(1), Complex(0,10), Complex(1,-10)),
            ],
            'a*b': [
                    (1, 10, 10),
                    (1, Complex(0,10), Complex(0, 10)),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), Complex(0,10)),
            ],
            'a/b': [
                    (1., 10, 0.1),
                    (1, Complex(0,10), Complex(0, -0.1)),
                    (Complex(0, 10), 1, Complex(0, 10)),
                    (Complex(0, 10), Complex(1), Complex(0, 10)),
                    (Complex(1), Complex(0,10), Complex(0, -0.1)),
            ],
            'pow(a,b)': [
                    (1, 10, 1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), 1),
                    (2, Complex(4,0), 16),
            ],
            'cmp(a,b)': [
                    (1, 10, -1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, -1),
                    (Complex(0,10), Complex(1), -1),
                    (Complex(1), Complex(0,10), 1),
            ],
    }
    for expr in sorted(testsuite):
        print expr + ':'
        t = (expr,)
        for item in testsuite[expr]:
            checkop(*(t+item))


if __name__ == '__main__':
    test()

Youez - 2016 - github.com/yon3zu
LinuXploit