GIF89a=( õ' 7IAXKgNgYvYx\%wh…hŽth%ˆs%—x¨}9®Œ©€&©‰%¶†(¹–.¹5·œD¹&Çš)ÇŸ5ǘ;Í£*È¡&Õ²)ׯ7×µ<Ñ»4ï°3ø‘HÖ§KͯT÷¨Yÿšqÿ»qÿÔFØ !ù ' !ÿ NETSCAPE2.0 , =( þÀ“pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§gª«ªE¯°¨¬ª±²Œ¹º¹E¾­”´ÂB¶¯ §Åȸ»ÑD¾¿Á•ÄÅ®° ÝH¾ÒLÀÆDÙ«D¶BÝïðÀ¾DÑÑÔTÌÍíH òGö¨A RÎڐ |¥ ٭&ºìE8œ¹kGÔAÞpx­a¶­ã R2XB®åE8I€Õ6Xî:vT)äžþÀq¦è³¥ì仕F~%xñ  4#ZÔ‰O|-4Bs‘X:= QÉ œš lºÒyXJŠGȦ|s hÏíK–3l7·B|¥$'7Jީܪ‰‡àá”Dæn=Pƒ ¤Òëí‰`䌨ljóá¯Éüv>á–Á¼5 ½.69ûϸd«­ºÀûnlv©‹ªîf{¬ÜãPbŸ  l5‘ޝpß ´ ˜3aÅùäI«O’ý·‘áÞ‡˜¾Æ‚ÙÏiÇÿ‹Àƒ #öó)pâš Þ½ ‘Ý{ó)vmÞü%D~ 6f s}ŃƒDØW Eþ`‡þ À…L8xá†ç˜{)x`X/> Ì}mø‚–RØ‘*|`D=‚Ø_ ^ð5 !_…'aä“OÚ—7âcð`D”Cx`ÝÂ¥ä‹éY¹—F¼¤¥Š?¡Õ™ n@`} lď’ÄÉ@4>ñd œ à‘vÒxNÃ×™@žd=ˆgsžG±æ ´²æud &p8Qñ)ˆ«lXD©øÜéAžHìySun jª×k*D¤LH] †¦§C™Jä–´Xb~ʪwStŽ6K,°£qÁœ:9ت:¨þªl¨@¡`‚ûÚ ».Û¬¯t‹ÆSÉ[:°=Š‹„‘Nåû”Ìî{¿ÂA ‡Rà›ÀÙ6úë°Ÿð0Ä_ ½;ÃϱîÉì^ÇÛÇ#Ëë¼ôº!±Ä˜íUîÅÇ;0L1óÁµö«p% AÀºU̬ݵ¼á%霼€‡¯Á~`ÏG¯»À× ­²± =4ªnpð3¾¤³¯­ü¾¦îuÙuµÙ®|%2ÊIÿür¦#0·ÔJ``8È@S@5ê¢ ö×Þ^`8EÜ]ý.뜃Âç 7 ú ȉÞj œ½Dç zý¸iþœÑÙûÄë!ˆÞÀl§Ïw‹*DçI€nEX¯¬¼ &A¬Go¼QföõFç°¯;é¦÷îŽêJ°îúôF5¡ÌQ|îúöXªæ»TÁÏyñêï]ê² o óÎC=öõ›ÒÓPB@ D×½œä(>èCÂxŽ`±«Ÿ–JЀ»Û á¤±p+eE0`ëŽ`A Ú/NE€Ø†À9‚@¤à H½7”à‡%B‰`Àl*ƒó‘–‡8 2ñ%¸ —€:Ù1Á‰E¸àux%nP1ð!‘ðC)¾P81lÑɸF#ˆ€{´âé°ÈB„0>±û °b¡Š´±O‚3È–Ù()yRpbµ¨E.Z‘D8ÊH@% òŒx+%Ù˜Æcü »¸˜fõ¬b·d`Fê™8èXH"ÉÈ-±|1Ô6iI, 2““¬$+](A*jÐ QTÂo‰.ÛU슬Œã„Ž`¯SN¡–¶Äåyše¯ª’­¬‚´b¦Éož œ)åyâ@Ì®3 ÎtT̉°&Ø+žLÀf"Ø-|žçÔ>‡Ðv¦Ðžì\‚ Q1)Ž@Žh#aP72”ˆ™¨$‚ !ù " , =( …7IAXG]KgNgYvYxR"k\%w]'}hŽth%ˆg+ˆs%—r.—m3šx3˜x¨}9®€&©€+¨‡7§‰%¶†(¹–.¹œD¹&ǘ;Í•&ײ)×»4ïÌ6ò§KÍ þ@‘pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g «¬ E ±± ¨­¶°ººE Á´”·®C¬²§Ç¶Œ»ÓDÃÕƷ¯Ê±H½ºM×ÁGÚ¬D¶BËÁ½î½DÓôTÏÛßîG»ôõC×CÌ l&âž:'òtU³6ɹ#·Ø)€'Ü.6±&ëÍÈ» K(8p0N?!æ2"ÛˆNIJX>R¼ÐO‚M '¡¨2¸*Ÿþ>#n↠å@‚<[:¡Iïf’ ¤TÚ˘CdbÜÙ“[«ŽEú5MBo¤×@€`@„€Êt W-3 ¶Ÿ¡BíêäjIÝ…Eò9[T…$íêﯧ„…•s»Óȳ¹€ÅÚdc®UUρ#±Ùïldj?´í¼²`\ŽÁðÞu|3'ÖŒ]ë6 ¶S#²‡˜FKLÈ *N E´‘áäŠ$˜›eÄYD„ºq«.è촁ƒs \-ÔjA 9²õ÷å- üúM[Âx(ís÷ì®x€|í¡Ù’p¦‚ ŽkÛTÇDpE@WÜ ²Ç]kŠ1¨ þ€·Yb ÓÁ‰l°*n0 ç™—žzBdОu¾7ĉBl€â‰-ºx~|UåU‰  h*Hœ|e"#"?vpÄiŠe6^ˆ„+qâŠm8 #VÇá ‘å–ÄV„œ|Аè•m"сœn|@›U¶ÆÎž—Špb¥G¨ED”€±Úê2FÌIç? >Éxå Œ± ¡¤„%‘žjŸ‘ꄯ<Ìaà9ijÐ2˜D¦È&›†Z`‚å]wþ¼Â:ç6àB¤7eFJ|õÒ§Õ,¨äàFÇ®cS·Ê¶+B°,‘Þ˜ºNûãØ>PADÌHD¹æž«ÄÀnÌ¥}­#Ë’ë QÀÉSÌÂÇ2ÌXÀ{æk²lQÁ2«ÊðÀ¯w|2Í h‹ÄÂG€,m¾¶ë3ÐÙ6-´ÅE¬L°ÆIij*K½ÀÇqï`DwVÍQXœÚÔpeœ±¬Ñ q˜§Tœ½µƒ°Œìu Â<¶aØ*At¯lmEØ ü ôÛN[P1ÔÛ¦­±$ÜÆ@`ùåDpy¶yXvCAyåB`ŽD¶ 0QwG#¯ æš[^Äþ $ÀÓÝǦ{„L™[±úKÄgÌ;ï£S~¹ìGX.ôgoT.»åˆ°ùŸûù¡?1zö¦Ÿž:ÅgÁ|ìL¹ „®£œŠ‚à0œ]PÁ^p F<"•ç?!,ñ‡N4—…PÄ Á„ö¨Û:Tè@hÀ‹%táÿ:ø-žI<`þ‹p I….)^ 40D#p@ƒj4–؀:²‰1Øâr˜¼F2oW¼#Z†;$Q q” ‘ ÂK¦ñNl#29 !’F@¥Bh·ᏀL!—XFóLH‘Kh¤.«hE&JòG¨¥<™WN!€ÑÙÚˆY„@†>Œž19J" 2,/ &.GXB%ÌRÈ9B6¹W]’î×ÔW¥’IÎ$ ñ‹ÓŒE8YÆ ¼³™ñA5“à®Q.aŸB€&Ø©³ JÁ—! ¦t)K%tœ-¦JF bòNMxLôþ)ÐR¸Ð™‘ èÝ6‘O!THÌ„HÛ ‰ !ù ) , =( …AXKgNgYvYxR"k\%wh…hŽh%ˆg+ˆs%—r.—x3˜x¨}9®€&©€+¨Œ,©‡7§‰%¶†(¹–.¹5·&Çš)ǘ;Í•&×£*Ȳ)ׯ7×»4ï°3øÌ6ò‘HÖ§KÍ»Hó¯T÷¨Yÿ»qÿÇhÿ þÀ”pH,È¤rÉl:ŸÐ¨tJ­Z¯Ø¬vËíz¿à°xL.›Ïè´zÍn»ßð¸|N¯Ûïø¼~Ïïûÿ€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§g ª« E$±²¨ª­ · °²½$E$ÂÕ««D· Í ¿¦Ç¶¸ÌŒ¾³CÃÅÆ E ééH½MÛÂGâªD­ çBêêϾD²ÒaÀà€Š1r­ðÓ¤ ÔožzU!L˜C'¾yW½UGtäÇïÙllê0×àÂuGþ)AÀs[þ·xì ÁxO%ƒûX2ó—  P£n›R/¡ÑšHše+êDm?# —‘Ç£6¡8íJ¡ŸâDiäªM¥Ö„ôj“¬¹£5oQ7°- <‡ *´lãÓŒ2r/a!l)dÈ A™ÈE¢ôÔ͆…ð ;Ö˜c ¡%ß‚’Ùˆâ¸b½—pe~C"BíëÚHïeF2§æŠ8qb t_`urŠeü wÅu3êæPv§h•"ß`íÍxçLĹÜÖ3á  ~Öº“®›¸ÏMDfJÙ °„ÛµáWõ%§œ‚à©–‚X ÓØ)@®Ñ›Eþ´wëuÅSxb8y\mÖzœ¥§ZbºE—ÂLªÌw!y(>¡™wú=Ç|ÅÝs¢d €CÁW)HÜcC$€L Ä7„r.á\{)@ð` @ äXÈ$PD” `šaG:§æˆOˆ72EÐamn]ù"ŒcÊxÑŒ° &dR8`g«iÙŸLR!¦P …d’ä¡“¦ðÎTƒ¦ià|À _ ¥ Qi#¦Šg›Æ ›noMµ ›V ã£)p ç£ÎW…š=Âeªk§†j„ ´®1ß²sÉxéW«jšl|0¯B0Û, \jÛ´›6±¬¶C ÛíWþï|ëÙ‹¸ñzĸV {ì;Ýñn¼òVˆm³I¼³.Ðã¤PN¥ ²µ¼„µCã+¹ÍByî£Ñ¾HŸ›ëê 7ìYÆFTk¨SaoaY$Dµœìï¿Ã29RÈkt Çïfñ ÇÒ:ÀÐSp¹3ÇI¨â¥DZÄ ü9Ïýögñ½­uÔ*3)O‘˜Ö[_hv ,àî×Et Ÿé¶BH€ Õ[ü±64M@ÔSÌM7dÐl5-ÄÙU܍´©zߌ3Ô€3ž„ „ ¶ÛPô½5×g› êÚ˜kN„Ý…0Îj4€Ìë°“#{þÕ3S2çKÜ'ợlø¼Ú2K{° {Û¶?žm𸧠ËI¼nEò='êüóºè^üæÃ_Û=°óž‚ì#Oý¿Í'¡½áo..ÏYìnüñCœO±Áa¿¢Kô½o,üÄËbö²çºíï{ËC Ú— "”Ï{ËK ÍÒw„õ±Oz dÕ¨à:$ ƒô—«v»] A#ð «€¿šéz)Rx׿ˆ¥‚d``èw-îyÏf×K!ð€þ­Ð|ìPľ„=Ì`ý(f” 'Pa ¥ÐBJa%Ðâf§„%Š¡}FàáÝ×6>ÉäŠG"éŽè=ø!oа^FP¼Ø©Q„ÀCÙÁ`(Ž\ÄÝ® ©Â$<n@dÄ E#ììUÒI! ‚#lù‹`k¦ÐÇ'Rró’ZýNBÈMF Í[¤+‹ðɈ-áwj¨¥þ8¾rá ,VÂh„"|½œ=×G_¦Ñ™EØ 0i*%̲˜Æda0mV‚k¾)›;„&6 p>ÓjK “¦Ç# âDÂ:ûc?:R Ó¬fÞéI-Ì“•Ã<ä=™Ï7˜3œ¨˜c2ŒW ,ˆ”8(T™P‰F¡Jhç"‚ ; 403WebShell
403Webshell
Server IP : 172.67.177.218  /  Your IP : 216.73.216.66
Web Server : LiteSpeed
System : Linux premium229.web-hosting.com 4.18.0-553.45.1.lve.el8.x86_64 #1 SMP Wed Mar 26 12:08:09 UTC 2025 x86_64
User : akhalid ( 749)
PHP Version : 8.3.22
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /usr/lib64/python3.6/site-packages/cryptography/hazmat/primitives/asymmetric/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/lib64/python3.6/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

import abc

try:
    # Only available in math in 3.5+
    from math import gcd
except ImportError:
    from fractions import gcd

import six

from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import RSABackend


@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKey(object):
    @abc.abstractmethod
    def signer(self, padding, algorithm):
        """
        Returns an AsymmetricSignatureContext used for signing data.
        """

    @abc.abstractmethod
    def decrypt(self, ciphertext, padding):
        """
        Decrypts the provided ciphertext.
        """

    @abc.abstractproperty
    def key_size(self):
        """
        The bit length of the public modulus.
        """

    @abc.abstractmethod
    def public_key(self):
        """
        The RSAPublicKey associated with this private key.
        """

    @abc.abstractmethod
    def sign(self, data, padding, algorithm):
        """
        Signs the data.
        """


@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKeyWithSerialization(RSAPrivateKey):
    @abc.abstractmethod
    def private_numbers(self):
        """
        Returns an RSAPrivateNumbers.
        """

    @abc.abstractmethod
    def private_bytes(self, encoding, format, encryption_algorithm):
        """
        Returns the key serialized as bytes.
        """


@six.add_metaclass(abc.ABCMeta)
class RSAPublicKey(object):
    @abc.abstractmethod
    def verifier(self, signature, padding, algorithm):
        """
        Returns an AsymmetricVerificationContext used for verifying signatures.
        """

    @abc.abstractmethod
    def encrypt(self, plaintext, padding):
        """
        Encrypts the given plaintext.
        """

    @abc.abstractproperty
    def key_size(self):
        """
        The bit length of the public modulus.
        """

    @abc.abstractmethod
    def public_numbers(self):
        """
        Returns an RSAPublicNumbers
        """

    @abc.abstractmethod
    def public_bytes(self, encoding, format):
        """
        Returns the key serialized as bytes.
        """

    @abc.abstractmethod
    def verify(self, signature, data, padding, algorithm):
        """
        Verifies the signature of the data.
        """


RSAPublicKeyWithSerialization = RSAPublicKey


def generate_private_key(public_exponent, key_size, backend=None):
    backend = _get_backend(backend)
    if not isinstance(backend, RSABackend):
        raise UnsupportedAlgorithm(
            "Backend object does not implement RSABackend.",
            _Reasons.BACKEND_MISSING_INTERFACE,
        )

    _verify_rsa_parameters(public_exponent, key_size)
    return backend.generate_rsa_private_key(public_exponent, key_size)


def _verify_rsa_parameters(public_exponent, key_size):
    if public_exponent not in (3, 65537):
        raise ValueError(
            "public_exponent must be either 3 (for legacy compatibility) or "
            "65537. Almost everyone should choose 65537 here!"
        )

    if key_size < 512:
        raise ValueError("key_size must be at least 512-bits.")


def _check_private_key_components(
    p, q, private_exponent, dmp1, dmq1, iqmp, public_exponent, modulus
):
    if modulus < 3:
        raise ValueError("modulus must be >= 3.")

    if p >= modulus:
        raise ValueError("p must be < modulus.")

    if q >= modulus:
        raise ValueError("q must be < modulus.")

    if dmp1 >= modulus:
        raise ValueError("dmp1 must be < modulus.")

    if dmq1 >= modulus:
        raise ValueError("dmq1 must be < modulus.")

    if iqmp >= modulus:
        raise ValueError("iqmp must be < modulus.")

    if private_exponent >= modulus:
        raise ValueError("private_exponent must be < modulus.")

    if public_exponent < 3 or public_exponent >= modulus:
        raise ValueError("public_exponent must be >= 3 and < modulus.")

    if public_exponent & 1 == 0:
        raise ValueError("public_exponent must be odd.")

    if dmp1 & 1 == 0:
        raise ValueError("dmp1 must be odd.")

    if dmq1 & 1 == 0:
        raise ValueError("dmq1 must be odd.")

    if p * q != modulus:
        raise ValueError("p*q must equal modulus.")


def _check_public_key_components(e, n):
    if n < 3:
        raise ValueError("n must be >= 3.")

    if e < 3 or e >= n:
        raise ValueError("e must be >= 3 and < n.")

    if e & 1 == 0:
        raise ValueError("e must be odd.")


def _modinv(e, m):
    """
    Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
    """
    x1, x2 = 1, 0
    a, b = e, m
    while b > 0:
        q, r = divmod(a, b)
        xn = x1 - q * x2
        a, b, x1, x2 = b, r, x2, xn
    return x1 % m


def rsa_crt_iqmp(p, q):
    """
    Compute the CRT (q ** -1) % p value from RSA primes p and q.
    """
    return _modinv(q, p)


def rsa_crt_dmp1(private_exponent, p):
    """
    Compute the CRT private_exponent % (p - 1) value from the RSA
    private_exponent (d) and p.
    """
    return private_exponent % (p - 1)


def rsa_crt_dmq1(private_exponent, q):
    """
    Compute the CRT private_exponent % (q - 1) value from the RSA
    private_exponent (d) and q.
    """
    return private_exponent % (q - 1)


# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000


def rsa_recover_prime_factors(n, e, d):
    """
    Compute factors p and q from the private exponent d. We assume that n has
    no more than two factors. This function is adapted from code in PyCrypto.
    """
    # See 8.2.2(i) in Handbook of Applied Cryptography.
    ktot = d * e - 1
    # The quantity d*e-1 is a multiple of phi(n), even,
    # and can be represented as t*2^s.
    t = ktot
    while t % 2 == 0:
        t = t // 2
    # Cycle through all multiplicative inverses in Zn.
    # The algorithm is non-deterministic, but there is a 50% chance
    # any candidate a leads to successful factoring.
    # See "Digitalized Signatures and Public Key Functions as Intractable
    # as Factorization", M. Rabin, 1979
    spotted = False
    a = 2
    while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
        k = t
        # Cycle through all values a^{t*2^i}=a^k
        while k < ktot:
            cand = pow(a, k, n)
            # Check if a^k is a non-trivial root of unity (mod n)
            if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
                # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                # Either of the terms divides n.
                p = gcd(cand + 1, n)
                spotted = True
                break
            k *= 2
        # This value was not any good... let's try another!
        a += 2
    if not spotted:
        raise ValueError("Unable to compute factors p and q from exponent d.")
    # Found !
    q, r = divmod(n, p)
    assert r == 0
    p, q = sorted((p, q), reverse=True)
    return (p, q)


class RSAPrivateNumbers(object):
    def __init__(self, p, q, d, dmp1, dmq1, iqmp, public_numbers):
        if (
            not isinstance(p, six.integer_types)
            or not isinstance(q, six.integer_types)
            or not isinstance(d, six.integer_types)
            or not isinstance(dmp1, six.integer_types)
            or not isinstance(dmq1, six.integer_types)
            or not isinstance(iqmp, six.integer_types)
        ):
            raise TypeError(
                "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
                " all be an integers."
            )

        if not isinstance(public_numbers, RSAPublicNumbers):
            raise TypeError(
                "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
                " instance."
            )

        self._p = p
        self._q = q
        self._d = d
        self._dmp1 = dmp1
        self._dmq1 = dmq1
        self._iqmp = iqmp
        self._public_numbers = public_numbers

    p = utils.read_only_property("_p")
    q = utils.read_only_property("_q")
    d = utils.read_only_property("_d")
    dmp1 = utils.read_only_property("_dmp1")
    dmq1 = utils.read_only_property("_dmq1")
    iqmp = utils.read_only_property("_iqmp")
    public_numbers = utils.read_only_property("_public_numbers")

    def private_key(self, backend=None):
        backend = _get_backend(backend)
        return backend.load_rsa_private_numbers(self)

    def __eq__(self, other):
        if not isinstance(other, RSAPrivateNumbers):
            return NotImplemented

        return (
            self.p == other.p
            and self.q == other.q
            and self.d == other.d
            and self.dmp1 == other.dmp1
            and self.dmq1 == other.dmq1
            and self.iqmp == other.iqmp
            and self.public_numbers == other.public_numbers
        )

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash(
            (
                self.p,
                self.q,
                self.d,
                self.dmp1,
                self.dmq1,
                self.iqmp,
                self.public_numbers,
            )
        )


class RSAPublicNumbers(object):
    def __init__(self, e, n):
        if not isinstance(e, six.integer_types) or not isinstance(
            n, six.integer_types
        ):
            raise TypeError("RSAPublicNumbers arguments must be integers.")

        self._e = e
        self._n = n

    e = utils.read_only_property("_e")
    n = utils.read_only_property("_n")

    def public_key(self, backend=None):
        backend = _get_backend(backend)
        return backend.load_rsa_public_numbers(self)

    def __repr__(self):
        return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)

    def __eq__(self, other):
        if not isinstance(other, RSAPublicNumbers):
            return NotImplemented

        return self.e == other.e and self.n == other.n

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self.e, self.n))

Youez - 2016 - github.com/yon3zu
LinuXploit